Cell dynamics in fetal intestinal epithelium: implications for intestinal growth and morphogenesis.

نویسندگان

  • Ann S Grosse
  • Mark F Pressprich
  • Lauren B Curley
  • Kara L Hamilton
  • Ben Margolis
  • Jeffrey D Hildebrand
  • Deborah L Gumucio
چکیده

The cellular mechanisms that drive growth and remodeling of the early intestinal epithelium are poorly understood. Current dogma suggests that the murine fetal intestinal epithelium is stratified, that villi are formed by an epithelial remodeling process involving the de novo formation of apical surface at secondary lumina, and that radial intercalation of the stratified cells constitutes a major intestinal lengthening mechanism. Here, we investigate cell polarity, cell cycle dynamics and cell shape in the fetal murine intestine between E12.5 and E14.5. We show that, contrary to previous assumptions, this epithelium is pseudostratified. Furthermore, epithelial nuclei exhibit interkinetic nuclear migration, a process wherein nuclei move in concert with the cell cycle, from the basal side (where DNA is synthesized) to the apical surface (where mitosis takes place); such nuclear movements were previously misinterpreted as the radial intercalation of cells. We further demonstrate that growth of epithelial girth between E12.5 and E14.5 is driven by microtubule- and actinomyosin-dependent apicobasal elongation, rather than by progressive epithelial stratification as was previously thought. Finally, we show that the actin-binding protein Shroom3 is crucial for the maintenance of the single-layered pseudostratified epithelium. In mice lacking Shroom3, the epithelium is disorganized and temporarily stratified during villus emergence. These results favor an alternative model of intestinal morphogenesis in which the epithelium remains single layered and apicobasally polarized throughout early intestinal development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The study of microanatomy of intestinal epithelium in the Chinese soft-shelled turtle (Pelodiscus sinensis)

The microanatomy of the intestinal epithelium in the Chinese soft-shelled turtle (CST) was studied by light and transmission electron microscopy (TEM). The small intestinal epithelium (SIE) was single layered or pseudostratified. The enterocytes contained mitochondria or mitochondria and lipid droplets. The enterocytes were arranged tightly in the apical parts of epithelium and connected by des...

متن کامل

Anisotropic growth shapes intestinal tissues during embryogenesis.

Embryogenesis offers a real laboratory for pattern formation, buckling, and postbuckling induced by growth of soft tissues. Each part of our body is structured in multiple adjacent layers: the skin, the brain, and the interior of organs. Each layer has a complex biological composition presenting different elasticity. Generated during fetal life, these layers will experience growth and remodelin...

متن کامل

Mucin gene expression in human embryonic and fetal intestine.

BACKGROUND The intestinal epithelium is covered by a continuous layer of mucus which is secreted by well differentiated epithelial cells. Disregulation of the expression of mucins has been reported to have possible implications in the neoplastic process which affects intestinal mucosae. It is well known that preneoplastic and neoplastic tissues can express fetal phenotypic characteristics. AI...

متن کامل

Efficacy of Bactocell® and Toyocerin® as Probiotics on Growth Performance, Blood Parameters and Intestinal Morphometry of Turkey Poults

A feeding trial was conducted to investigate the efficacy of Pediococcus acidlactici (Bactocell®) or Baccillus cereus (Toyocerin®)-based probiotics on turkey’s performance, carcass yield, blood parameters and intestinal morphology. A total of 240 1- day-old male Nicholas turkey poults were allocated into three dietary groups with four replicates. A corn-soybean-based diet was used as a basal di...

متن کامل

Fibroblast growth factor receptor-3 regulates Paneth cell lineage allocation and accrual of epithelial stem cells during murine intestinal development.

Fibroblast growth factor receptor 3 (FGFR-3) is expressed in the lower crypt epithelium, where stem cells of the intestine reside. The role of FGFR-3 signaling in regulating features of intestinal morphogenesis was examined in FGFR-3-null (FGFR-3(-/-)) mice. FGFR-3(-/-) mice had only about half the number of intestinal crypts and a marked decrease in the number of functional clonogenic stem cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 138 20  شماره 

صفحات  -

تاریخ انتشار 2011